

 [image: _images/logo_kobuki.png]

Contents

Kobuki

	About

	Out of the Box

	Installing & Running the Software

	Creating Applications

	C++ API (Doxygen) [https://kobuki-base.github.io/kobuki_core/]

Kobuki Resources

	Anatomy

	Conversions

	Serial Protocol

	Firmware

	Media

Advanced Kobuki

	Docking Stations

	Embedded Boards

	Non-C++ Kobuki

Reference

	Changelog

	Glossary

 [image: _images/logo_kobuki.png]

About

Introducing Korea’s first robotic turtle.

kobuki [거북이] n. turtle

Kobuki is robotically engineered to be long-lived, tough and fast. With high performance batteries, Kobuki will tirelessly work alongside you through those long coffee-powered nights. He’ll also happily burden himself with your modded array of sensors, actuators, laptops, embedded boards, portside cannons and do it all at a speed that makes his real world cousins seem like … well, turtles.

Use him for serving 치맥 (chi-mek), chasing your neighbour’s kids or simply, to make your own robot ideas become reality.

Kobuki is still young, don’t expect him to remain as he is . Kobuki’s development has already been significantly influenced by the community and as he marches towards old age, we will continue to work with the community and you to ensure he becomes better with time.

Sincerely,
Kobuki Team.

Out of the Box

Charging

Connect the power adapter to Kobuki or dock Kobuki in the docking station. If Kobuki is turned on, you will hear a short sound when charging starts and the LED will light up appropriately.

	LED Color

	Status

	Green

	fully charged

	Blinking Green

	charging

	Orange

	low battery

Note

The battery still charges if Kobuki is off, but you will not see the LED, nor hear sounds

First Run

You want to see Kobuki in action without further ado? Kobuki has a special random walker mode embedded
into the firmware which you can activate on start-up:

	Disconnect the power cable

	Turn on Kobuki.

	Within the first 3 seconds press the B0 button and hold for 2 seconds.

	LED2 will start blinking and Kobuki wander around.

Note

This was introduced to the firmware in v1.1.0. In case your kobuki is not running this or a
later version, please refer to Updating Firmware.

Installing & Running the Software

Install from Binaries

If you happen to have access to a binary install (e.g. ROS), follow their instructions and
then proceed directly to Checking the Version Info, otherwise follow the instructions below to
build Kobuki and it’s dependencies from source.

Build from Source

Requirements

The environment under which these instructions have been tested (and thus supported) is as follows.

	Platform: Linux (most flavours)

	C++ Version: c++14

	Compiler: gcc

	Build Dependencies: ament, colcon, vcstool, CMake

	Code Dependencies: Eigen, Sophus, ECL

Other platforms may work, but your mileage will vary. Windows has been supported in the past, so
if you’re willing to do a bit of work, you might find success.

Preparation

Ensure your system has the following packages installed:

	GCC (>=9)

	CMake (>=3.5)

	wget

	python3-venv

Download a few scripts that will help setup your workspace.

$ mkdir kobuki && cd kobuki

a virtual environment launcher that will fetch build tools from pypi (colcon, vcstools)
$ wget https://raw.githubusercontent.com/kobuki-base/kobuki_documentation/release/1.0.x/resources/venv.bash || exit 1

custom build configuration options for eigen, sophus
$ wget https://raw.githubusercontent.com/kobuki-base/kobuki_documentation/release/1.0.x/resources/colcon.meta || exit 1

list of repositories to git clone
$ wget https://raw.githubusercontent.com/kobuki-base/kobuki_documentation/release/1.0.x/resources/kobuki_standalone.repos || exit 1

Fetch the sources:

$ source ./venv.bash

$ mkdir src

vcs handles distributed fetching of repositories listed in a .repos file
$ vcs import ./src < kobuki_standalone.repos || exit 1

$ deactivate

Note

If you prefer to use your system Eigen:

$ touch src/eigen/AMENT_IGNORE

Build

$ source ./venv.bash

build everything
$ colcon build --merge-install --cmake-args -DBUILD_TESTING=OFF

disable any unused cmake variable warnings (e.g. sophus doesn't use BUILD_TESTING)
$ colcon build --merge-install --cmake-args -DBUILD_TESTING=OFF --no-warn-unused-cli

build a single package
$ colcon build --merge-install --packages-select kobuki_core --cmake-args -DBUILD_TESTING=OFF

build everything, verbosely
$ VERBOSE=1 colcon build --merge-install --event-handlers console_direct+ --cmake-args -DBUILD_TESTING=OFF

build release with debug symbols
$ colcon build --merge-install --cmake-args -DBUILD_TESTING=OFF -DCMAKE_BUILD_TYPE=RelWithDebInfo

update the source workspace
$ vcs pull ./src

$ deactivate

The resulting headers, libraries and resources can be found under ./install.

These instructions are continuously vetted with a github action
(yaml [https://github.com/kobuki-base/kobuki_documentation/blob/devel/.github/workflows/weekly.yaml],
results/logs [https://github.com/kobuki-base/kobuki_documentation/actions?query=workflow%3Abuild_sources]).

Connect Kobuki

Kobuki’s default means of communication is over usb (it can instead use the serial comm port
directly, more on that later). On most linux systems, your Kobuki will appear on
/dev/ttyUSBO as soon as you connect the cable. This is a typical serial2usb device port
and if you happen to be using more than one such device, Kobuki may appear at ttyUSB1,
ttyUSB1, …

In order to provide a constant identifier for the connection, we’ve prepared a udev rule for you:

$ wget https://raw.githubusercontent.com/kobuki-base/kobuki_ftdi/devel/60-kobuki.rules
$ sudo cp 60-kobuki.rules /etc/udev/rules.d

different linux distros may use a different service manager (this is Ubuntu's)
--> failing all else, a reboot will work
$ sudo service udev reload
$ sudo service udev restart

With this udev rule, you’ll find your Kobuki appear at /dev/kobuki as soon as you
connect and turn on the robot. This also comes with the added convenience that it is
the default device port value for most Kobuki programs.

	Connect the usb cable

	Turn Kobuki on (you’ll hear a chirp)

	Check for existence of /dev/kobuki

	I’m wearing a colander, you should too

Checking the Version Info

drop into the runtime enviroment
$ source ./install/setup.bash

who is your kobuki?
$ kobuki-version-info
Version Info:
 Hardware Version: 1.0.4
 Firmware Version: 1.2.0
 Software Version: 1.1.0
 Unique Device ID: 97713968-842422349-1361404194

Your driver may give you a warning (software or firmware upgrade advised) or error
(incompatible firmware/software) about mismatching versions.
If it’s the firmware you need to upgrade, refer to the section on Firmware.

Take Kobuki for a Test Drive

drop into the runtime enviroment
$ source ./install/setup.bash

take kobuki for a test drive
$ kobuki-simple-keyop
Simple Keyop : Utility for driving kobuki by keyboard.
KobukiManager : using linear vel step [0.05].
KobukiManager : using linear vel max [1].
KobukiManager : using angular vel step [0.33].
KobukiManager : using angular vel max [6.6].
Reading from keyboard

Forward/back arrows : linear velocity incr/decr.
Right/left arrows : angular velocity incr/decr.
Spacebar : reset linear/angular velocities.
q : quit.
current pose: [0, 0, 0]
current pose: [0, 0, 0]
current pose: [0, 0, 0]
current pose: [0.0064822, -1.17028e-06, -0.00074167]
current pose: [0.0226873, -9.88246e-05, -0.0133501]

Creating Applications

Chirp

About

This example merely configures and establishes a connection
to Kobuki which will cause it to chirp, pause for five
seconds and then emit the corresponding shutdown chirp.
First though, some information about the library
and the API that will be useful to get you started.

The Kobuki Library

The nature of the computational resources you have as well
as your application’s use case can have a significant
impact on how you design your application, especially for
details around the control loop. For this reason, the
library does not endeavour to provide a control loop
(that is up to you) and as such, libkobuki.so
is simply one of classes, data structures, simple functions
and collaback-oriented sigslot mechanisms.

The Kobuki Class

The kobuki:Kobuki class is the first port of call
for developing your application. Configuration and non-callback
modes of interaction are handled via this class. Callback modes
are handled by sigslots, mroe on these later.

Initialisation & Configuration

Kobuki configuration is handled by the kobuki:Parameters
class which is passed ot the kobuki instance via the
kobuki::Kobuki::init() method. Most of the parameters to be
configured have sane defaults.

The only one that requires frequent configuration is the serial device
port. If you aren’t using a udev rule to guarantee discovery
at /dev/kobuki, then you’ll typically find Kobuki at
COM1 (windows) or /dev/ttyUSB0 (linux).

Code

#include <iostream>
#include <string>
#include <ecl/time.hpp>
#include <ecl/command_line.hpp>
#include <kobuki_core/kobuki.hpp>

class KobukiManager
{
public:
 KobukiManager(const std::string &device)
 {
 kobuki::Parameters parameters;
 // Specify the device port, default: /dev/kobuki
 parameters.device_port = device;

 // Other parameters are typically happy enough as defaults, some examples follow
 //
 // namespaces all sigslot connection names, default: /kobuki
 parameters.sigslots_namespace = "/kobuki";
 // Most use cases will bring their own smoothing algorithms, but if
 // you wish to utilise kobuki's minimal acceleration limiter, set to true
 parameters.enable_acceleration_limiter = false;
 // Adjust battery thresholds if your levels are significantly varying from factory settings.
 // This will affect led status as well as triggering driver signals
 parameters.battery_capacity = 16.5;
 parameters.battery_low = 14.0;
 parameters.battery_dangerous = 13.2;

 // Initialise - exceptions are thrown if parameter validation or initialisation fails.
 try
 {
 kobuki.init(parameters);
 }
 catch (ecl::StandardException &e)
 {
 std::cout << e.what();
 }
 }
private:
 kobuki::Kobuki kobuki;
};

int main(int argc, char **argv)
{
 ecl::CmdLine cmd_line("chirp", ' ', "0.2");
 ecl::ValueArg<std::string> device_port(
 "p", "port",
 "Path to device file of serial port to open",
 false,
 "/dev/kobuki",
 "string"
);
 cmd_line.add(device_port);
 cmd_line.parse(argc, argv);

 KobukiManager kobuki_manager(device_port.getValue());
 ecl::Sleep()(5);
 return 0;
}

Events & Streams

About

The next two applications make use of the callback handles provided
by the core Kobuki class for listening in to events and streams
from the Kobuki. This is done by registering callbacks with the
sigslots [https://wiki.ros.org/ecl_sigslots] framework.

Signals and Slots

The kobuki driver establishes a set of signals on uniquely labelled
channels. Each channel consists of two parts. The first part
represents the namespace, which can be customised via the
sigslots_namespace variable in the kobuki::Parameter structure.
The second uniquely identifies the signal itself.

The following represent the available signals along with the type of data they transmit
when namespaced under the default namespace, “/kobuki”.

The Sensor Stream

	/kobuki/stream_data [void]

The stream_data channel signals that a new data packet has arrived
and is ready to be processed. These data packets are sent periodically and
are include a composited payload containing data from all sensor streams.
This is a special case, in that the type associated
with the signal does not represent the data that has been collected, but just that
it has arrived. This data can be fetched
from within the callback connected to this signal via
Kobuki::getCoreSensorData() which returns a
kobuki::CoreSensors::Data structure holding all the important sensor information
for the Kobuki.

General Purpose Signals

	/kobuki/ros_debug [std::string]

	/kobuki/ros_info [std::string]

	/kobuki/ros_warn [std::string]

	/kobuki/ros_error [std::string]

	/kobuki/version_info [kobuki::VersionInfo]: communicated only on request

Event Handling Signals

	/kobuki/button_event [kobuki::ButtonEvent]

	/kobuki/bumper_event [kobuki::BumperEvent]

	/kobuki/cliff_event [kobuki::CliffEvent]

	/kobuki/wheel_event [kobuki::WheelEvent]

	/kobuki/power_event [kobuki::PowerEvent]

	/kobuki/input_event [kobuki::InputEvent]

	/kobuki/robot_event [kobuki::RobotEvent]

These fire only when an event occurs.

Wheel events occur when the wheel position toggles between compressed and uncompressed
(e.g. when you lift the robot from the floor). Input events correspond to gpio state
changes (useful when you are customising Kobuki with additional sensors that can send
binary signals to your program).

Slots

The kobuki driver does not establish any slots, that part is up to you and is
demonstrated in the following program.

Code - Button Events

#include <iostream>
#include <random>
#include <string>
#include <vector>

#include <ecl/command_line.hpp>
#include <ecl/time.hpp>
#include <ecl/sigslots.hpp>

#include <kobuki_core/kobuki.hpp>

class KobukiManager
{
public:
 KobukiManager(const std::string &device) :
 slot_button_event(&KobukiManager::processButtonEvent, *this)
 {
 kobuki::Parameters parameters;
 parameters.device_port = device;

 try
 {
 kobuki.init(parameters);
 }
 catch (ecl::StandardException &e)
 {
 std::cout << e.what();
 }
 slot_button_event.connect("/kobuki/button_event");
 }

 /*
 * Nothing to do in the main thread, just put it to sleep
 */
 void spin()
 {
 ecl::Sleep sleep(1);
 while (true)
 {
 sleep();
 }
 }

 /*
 * Catches button events and prints a curious message to stdout.
 */
 void processButtonEvent(const kobuki::ButtonEvent &event)
 {
 std::vector<std::string> quotes = {
 "That's right buddy, keep pressin' my buttons. See what happens!",
 "Anything less than immortality is a complete waste of time",
 "I can detect humour, you are just not funny",
 "I choose to believe ... what I was programmed to believe",
 "My story is a lot like yours, only more interesting ‘cause it involves robots.",
 "I wish you'd just tell me rather trying to engage my enthusiasm with these buttons, because I haven't got one.",
 };
 std::random_device r;
 std::default_random_engine generator(r());
 std::uniform_int_distribution<int> distribution(0, 5);
 if (event.state == kobuki::ButtonEvent::Released) {
 std::cout << quotes[distribution(generator)] << std::endl;
 }
 }

private:
 kobuki::Kobuki kobuki;
 ecl::Slot<const kobuki::ButtonEvent&> slot_button_event;
};

int main(int argc, char **argv)
{
 ecl::CmdLine cmd_line("buttons", ' ', "0.1");
 ecl::ValueArg<std::string> device_port(
 "p", "port",
 "Path to device file of serial port to open",
 false,
 "/dev/kobuki",
 "string"
);
 cmd_line.add(device_port);
 cmd_line.parse(argc, argv);

 KobukiManager kobuki_manager(device_port.getValue());
 kobuki_manager.spin();
 return 0;
}

Code - The Sensor Stream

#include <iostream>
#include <string>

#include <ecl/command_line.hpp>
#include <ecl/time.hpp>
#include <ecl/sigslots.hpp>

#include <kobuki_core/kobuki.hpp>

class KobukiManager
{
public:
 KobukiManager(const std::string &device) :
 slot_stream_data(&KobukiManager::processStreamData, *this)
 {
 kobuki::Parameters parameters;
 parameters.device_port = device;

 try
 {
 kobuki.init(parameters);
 }
 catch (ecl::StandardException &e)
 {
 std::cout << e.what();
 }
 slot_stream_data.connect("/kobuki/stream_data");
 }

 /*
 * Nothing to do in the main thread, just put it to sleep
 */
 void spin()
 {
 ecl::Sleep sleep(1);
 while (true)
 {
 sleep();
 }
 }

 /*
 * Called whenever the kobuki receives a data packet.
 * Up to you from here to process it.
 */
 void processStreamData()
 {
 kobuki::CoreSensors::Data data = kobuki.getCoreSensorData();
 std::cout << "Encoders [" << data.left_encoder << "," << data.right_encoder << "]" << std::endl;
 }

private:
 kobuki::Kobuki kobuki;
 ecl::Slot<> slot_stream_data;
};

int main(int argc, char **argv)
{
 ecl::CmdLine cmd_line("buttons", ' ', "0.1");
 ecl::ValueArg<std::string> device_port(
 "p", "port",
 "Path to device file of serial port to open",
 false,
 "/dev/kobuki",
 "string"
);
 cmd_line.add(device_port);
 cmd_line.parse(argc, argv);

 KobukiManager kobuki_manager(device_port.getValue());
 kobuki_manager.spin();
 return 0;
}

A Simple Control Loop

About

This example demonstrates how to process kobuki’s pose data
and based on the current pose, computes and sends the
appropriate wheel commands to the robot, i.e. it closes the loop
between sensing and control.

Code

Engage and watch Kobuki move around a dead-reckoned
square with sides of length 1.0m.

#include <string>
#include <csignal>
#include <ecl/geometry.hpp>
#include <ecl/time.hpp>
#include <ecl/sigslots.hpp>
#include <ecl/linear_algebra.hpp>
#include <ecl/command_line.hpp>
#include "kobuki_core/kobuki.hpp"

/***
** Classes
***/

class KobukiManager {
public:
 KobukiManager(
 const std::string & device,
 const double &length,
 const bool &disable_smoothing
) :
 dx(0.0), dth(0.0),
 length(length),
 slot_stream_data(&KobukiManager::processStreamData, *this)
 {
 kobuki::Parameters parameters;
 parameters.sigslots_namespace = "/kobuki";
 parameters.device_port = device;
 parameters.enable_acceleration_limiter = !disable_smoothing;

 kobuki.init(parameters);
 kobuki.enable();
 slot_stream_data.connect("/kobuki/stream_data");
 }

 ~KobukiManager() {
 kobuki.setBaseControl(0,0); // linear_velocity, angular_velocity in (m/s), (rad/s)
 kobuki.disable();
 }

 void processStreamData() {
 ecl::linear_algebra::Vector3d pose_update;
 ecl::linear_algebra::Vector3d pose_update_rates;
 kobuki.updateOdometry(pose_update, pose_update_rates);
 ecl::concatenate_poses(pose, pose_update);
 dx += pose_update[0]; // x
 dth += pose_update[2]; // heading
 // std::cout << dx << ", " << dth << std::endl;
 // std::cout << kobuki.getHeading() << ", " << pose.heading() << std::endl;
 // std::cout << "[" << pose[0] << ", " << pose.y() << ", " << pose.heading() << "]" << std::endl;
 processMotion();
 }

 // Generate square motion
 void processMotion() {
 const double buffer = 0.05;
 double longitudinal_velocity = 0.0;
 double rotational_velocity = 0.0;
 if (dx >= (length) && dth >= ecl::pi/2.0) {
 std::cout << "[Z] ";
 dx=0.0; dth=0.0;
 } else if (dx >= (length + buffer)) {
 std::cout << "[R] ";
 rotational_velocity = 1.1;
 } else {
 std::cout << "[L] ";
 longitudinal_velocity = 0.3;
 }
 std::cout << "[dx: " << dx << "][dth: " << dth << "][" << pose[0] << ", " << pose[1] << ", " << pose[2] << "]" << std::endl;
 kobuki.setBaseControl(longitudinal_velocity, rotational_velocity);
 }

 const ecl::linear_algebra::Vector3d& getPose() {
 return pose;
 }

private:
 double dx, dth;
 const double length;
 ecl::linear_algebra::Vector3d pose; // x, y, heading
 kobuki::Kobuki kobuki;
 ecl::Slot<> slot_stream_data;
};

/***
** Signal Handler
***/

bool shutdown_req = false;
void signalHandler(int /* signum */) {
 shutdown_req = true;
}

/***
** Main
***/

int main(int argc, char** argv)
{
 ecl::CmdLine cmd_line("Uses a simple control loop to move Kobuki around a dead-reckoned square with sides of length 1.0m", ' ', "0.2");
 ecl::ValueArg<std::string> device_port(
 "p", "port",
 "Path to device file of serial port to open",
 false,
 "/dev/kobuki",
 "string"
);
 ecl::ValueArg<double> length(
 "l", "length",
 "traverse square with sides of this size in length (m)",
 false,
 0.25,
 "double"
);
 ecl::SwitchArg disable_smoothing(
 "d", "disable_smoothing",
 "Disable the acceleration limiter (smoothens velocity)",
 false
);

 cmd_line.add(device_port);
 cmd_line.add(length);
 cmd_line.add(disable_smoothing);
 cmd_line.parse(argc, argv);

 signal(SIGINT, signalHandler);

 std::cout << "Demo : Example of simple control loop." << std::endl;
 KobukiManager kobuki_manager(
 device_port.getValue(),
 length.getValue(),
 disable_smoothing.getValue()
);

 ecl::Sleep sleep(1);
 ecl::linear_algebra::Vector3d pose; // x, y, heading
 try {
 while (!shutdown_req){
 sleep();
 pose = kobuki_manager.getPose();
 // std::cout << "current pose: [" << pose[0] << ", " << pose[1] << ", " << pose[2] << "]" << std::endl;
 }
 } catch (ecl::StandardException &e) {
 std::cout << e.what();
 }
 return 0;
}

Decoupling the Control

This program relied on the periodic sensor stream to trigger the
control commands. This results in a loop with the fewest
lines of code as well as minimum latency between pose update and
control.

Alternatively, you may wish to decopule the control from the
sensor stream callback (e.g. via the spin() method). That
is also fine and usual in more complex use cases. Beware however, of
concurrency issues if using a separate thread.

Logging

About

Kobuki provides loggers over the debug, info, warning and error signals. By
default, the software wires up stdout loggers directly to the warning and error
signals, but you can both change this log level (e.g. DEBUG will cause all
log levels to be printed to stdout) OR disable them complately and wire up slots
to your own loggers.

Code - Log Levels

#include <iostream>
#include <string>
#include <ecl/console.hpp>
#include <ecl/time.hpp>
#include <ecl/command_line.hpp>
#include <kobuki_core/kobuki.hpp>

int main(int argc, char **argv)
{
 ecl::CmdLine cmd_line("log_levels", ' ', "0.1");
 ecl::ValueArg<std::string> device_port(
 "p", "port",
 "Path to device file of serial port to open",
 false,
 "/dev/kobuki",
 "string"
);
 cmd_line.add(device_port);
 cmd_line.parse(argc, argv);

 std::cout << ecl::bold << "\nLog Levels Demo\n" << ecl::reset << std::endl;

 kobuki::Parameters parameters;
 parameters.device_port = device_port.getValue();
 parameters.log_level = kobuki::LogLevel::DEBUG;

 kobuki::Kobuki kobuki;
 try {
 kobuki.init(parameters);
 } catch (ecl::StandardException &e) {
 std::cout << e.what();
 }

 ecl::Sleep()(5);
 return 0;
}

Output - Log Levels

[image: _images/demo_log_levels.png]

Code - Custom Loggers

#include <iostream>
#include <string>
#include <ecl/console.hpp>
#include <ecl/sigslots.hpp>
#include <ecl/time.hpp>
#include <ecl/command_line.hpp>
#include <kobuki_core/kobuki.hpp>

class KobukiManager
{
public:
 KobukiManager(const std::string &device) :
 slot_debug(&KobukiManager::logCustomDebug, *this),
 slot_info(&KobukiManager::logCustomInfo, *this),
 slot_warning(&KobukiManager::logCustomWarning, *this),
 slot_error(&KobukiManager::logCustomError, *this)
 {
 kobuki::Parameters parameters;

 parameters.device_port = device;
 // Disable the default loggers
 parameters.log_level = kobuki::LogLevel::NONE;

 // Wire them up ourselves
 slot_debug.connect(parameters.sigslots_namespace + "/debug");
 slot_info.connect(parameters.sigslots_namespace + "/info");
 slot_warning.connect(parameters.sigslots_namespace + "/warning");
 slot_error.connect(parameters.sigslots_namespace + "/error");

 try {
 kobuki.init(parameters);
 } catch (ecl::StandardException &e) {
 std::cout << e.what();
 }
 }

 void logCustomDebug(const std::string& message) {
 std::cout << ecl::green << "[DEBUG_WITH_COLANDERS] " << message << ecl::reset << std::endl;
 }

 void logCustomInfo(const std::string& message) {
 std::cout << "[INFO_WITH_COLANDERS] " << message << ecl::reset << std::endl;
 }

 void logCustomWarning(const std::string& message) {
 std::cout << ecl::yellow << "[WARNING_WITH_COLANDERS] " << message << ecl::reset << std::endl;
 }

 void logCustomError(const std::string& message) {
 std::cout << ecl::red << "[ERROR_WITH_COLANDERS] " << message << ecl::reset << std::endl;
 }

private:
 kobuki::Kobuki kobuki;
 ecl::Slot<const std::string&> slot_debug, slot_info, slot_warning, slot_error;
};

int main(int argc, char **argv)
{
 ecl::CmdLine cmd_line("logging", ' ', "0.3");
 ecl::ValueArg<std::string> device_port(
 "p", "port",
 "Path to device file of serial port to open",
 false,
 "/dev/kobuki",
 "string"
);
 cmd_line.add(device_port);
 cmd_line.parse(argc, argv);

 std::cout << ecl::bold << "\nLogging Demo\n" << ecl::reset << std::endl;

 KobukiManager kobuki_manager(device_port.getValue());
 ecl::Sleep()(5);
 return 0;
}

Output - Custom Loggers

[image: _images/demo_custom_logging.png]

Debugging the Stream

About

If you’re having troubles with your connection and need to debug the raw data stream,
tune into the /kobuki/raw_data_stream signal.

Code

#include <iostream>
#include <string>
#include <ecl/console.hpp>
#include <ecl/sigslots.hpp>
#include <ecl/time.hpp>
#include <ecl/command_line.hpp>
#include <kobuki_core/kobuki.hpp>

class KobukiManager
{
public:
 KobukiManager(const std::string &device) :
 slot_raw_data_stream(&KobukiManager::logRawDataStream, *this)
 {
 kobuki::Parameters parameters;

 parameters.device_port = device;

 slot_raw_data_stream.connect(parameters.sigslots_namespace + "/raw_data_stream");

 try {
 kobuki.init(parameters);
 } catch (ecl::StandardException &e) {
 std::cout << e.what();
 }
 }

 void logRawDataStream(kobuki::PacketFinder::BufferType& buffer) {
 std::ostringstream ostream;
 ostream << ecl::cyan << "[" << ecl::TimeStamp() << "] " << ecl::yellow;
 ostream << std::setfill('0') << std::uppercase;
 for (unsigned int i = 0; i < buffer.size(); i++) {
 ostream << std::hex << std::setw(2) << static_cast<unsigned int>(buffer[i]) << " " << std::dec;
 }
 ostream << ecl::reset;
 std::cout << ostream.str() << std::endl;
 }

private:
 kobuki::Kobuki kobuki;
 ecl::Slot<kobuki::PacketFinder::BufferType&> slot_raw_data_stream;
};

int main(int argc, char **argv)
{
 ecl::CmdLine cmd_line("raw_data_stream", ' ', "0.3");
 ecl::ValueArg<std::string> device_port(
 "p", "port",
 "Path to device file of serial port to open",
 false,
 "/dev/kobuki",
 "string"
);
 cmd_line.add(device_port);
 cmd_line.parse(argc, argv);

 std::cout << ecl::bold << "\nRaw Data Stream Demo\n" << ecl::reset << std::endl;

 KobukiManager kobuki_manager(device_port.getValue());
 ecl::Sleep()(5);
 return 0;
}

Output

[image: _images/demo_raw_data_stream.png]

Anatomy

Views

Top

[image: _images/top_view.jpg]

Bottom

[image: _images/bottom_view.jpg]

Control Panel

[image: _images/control_panel.jpg]

	19V/2A: Laptop power supply

	12V/5A: Arm power supply

	12v/1.5A: Microsoft Kinect power supply

	5V/1A: General power supply

	Status LED: Indicates Kobuki’s status

	Green: Kobuki is turned on and battery at high voltage level

	Orange: On - Low battery voltage level (please charge soon)

	Green blinking: On - Battery charging

	Off: Kobuki is turned off.

	LED1/2: Programmable LEDs

	USB: Data connection

	BO/1/2: Buttons

	Firmware switch: Enable/disables the firmware update mode

Connectors

Note

SOME NOTES ABOUT THE MOLEX PAGES BELOW

	We do not actually use Molex connectors but we are supplied by a Korean vendor who produces connectors according to the Molex standard. These links will be more useful to internationals in helping them find a mating part that works for them.

	The images on each page are representative of the series of connectors. Each series usually has a variety of connectors with a different number of pins. As a result, the pictures on some of the pages below may seem as though they have the incorrect number of pins, but do not worry about this – they are the correct links. Note that you can jump to different connectors in the series via the second part of their identification number (e.g. 43045-0224 for the 2-pin, 43045-0424 for the 4-pin).

	If some linked connectors are listed as obsolete on the molex website, don’t worry. The connector you are exactly requiring are those you can find under the ‘Mates with Parts’ link on each page. If these however should become obsolete as well, please let us know via email.

Power

[image: _images/power_panel.jpg]

	5V@1A Molex PN : 43650-0218 – for custom embedded boards (e.g. Arduino, Odroid)

	12V@1.5A : Molex PN : 43045-0224 – for depth sensors (originally designed for Kinect/Asus sensors)

	12V@5A : Molex PN : 3929-9023 – for high powered accessories (e.g. robotic arm)

	19V@2A : Molex PN : 3928-9068 – for recharging netbooks (with a modified adapter)

Battery

	4S1P/4S2P Battery Pack Connector: Molex PN : 00390-12040 [http://www.molex.com/molex/products/datasheet.jsp?part=active/0039012040_CRIMP_HOUSINGS.xml]

I/O Port

DB25 pin D-SUB Female connector that provides the following functionality (pdf [https://github.com/kobuki-base/kobuki_resources/blob/release/1.0.x/hardware/specifications/io_port.pdf])

Cables

Note

If you click on the preceding links for the power connectors, under the heading ‘Mates with Part(s)’ you can find the compatible connector to use with each power source. The most important one being of course:

	12V@1.5A : Molex PN : 43025-0200 [http://www.molex.com/molex/products/datasheet.jsp?part=active/0430250200_CRIMP_HOUSINGS.xml] – specially supporting the kinect

Models & Drawings

The models and drawings include both the base and parts for the Turtlebot 2.

	2D mechanical drawings [https://github.com/kobuki-base/kobuki_resources/tree/release/1.0.x/hardware/drawings] – DWG, PDF

	3D models [https://github.com/kobuki-base/kobuki_resources/tree/release/1.0.x/hardware/models/] – IGS, STEP

The inserts in the kobuki plate are M4 threads (metric, 4mm). If you wish to build standoffs compatible for these inserts, please reference the pole pdf’s in the 2D mechanical drawings which are what we use for turtlebots.

Motors

Specifications

	Brushed DC Motor

	Motor Manufacturer: Standard Motor

	Part Name: RP385-ST-2060

	Rated Voltage: 12 V

	Rated Load: 5 mN·m

	No Load Current: 210 mA

	No Load Speed: 9960 rpm ± 15%

	Rated Load Current: 750 mA

	Rated Load Speed: 8800 rpm ± 15%

	Armature Resistance: 1.5506 Ω at 25°C

	Armature Inductance: 1.51 mH

	Torque Constant(Kt): 10.913 mN·m/A

	Velocity Constant(Kv): 830 rpm/V

	Stall Current: 6.1 A

	Stall Torque: 33 mN·m

Control Method

	Driven by voltage source(H-bridge)

	Controlled by Pulse-width modulation(PWM)

Gyro

Specifications

	3-Axis Digital Gyroscope

	Manufacturer : STMicroelectronics

	Part Name : L3G4200D

	Measurement Range: ±250 deg/s

	Yaw axis is factory calibrated within the range of ±20 deg/s to ±100 deg/s

Performance

In-Place Rotation Test

This graph shows the average heading error per revolution of gyro, when robot rotates with a given velocity.

[image: _images/gyro_in_place_rotation.jpg]

Square Path Test

This graph shows the position error of fused odometry with gyro, when robot moves along a square path. Robot moved with 0.1 m/s on the line segment and rotated with 30 deg/s on the corner.

[image: _images/gyro_square_test.jpg]
This table shows the calculated angular error, when robot arrived at the diagonally opposite corner from the starting point (0.0, 0.0).

	Number of turns of square path

	Angular Error [deg]

	0.5

	0.47

	1.5

	1.99

	2.5

	3.18

Power Adapter

Specifications

	Input

	Output

	Voltage: 100-240V

	Voltage: 19V

	Ampere: 1.5A Max

	Ampere: 3.16A

	Frequency: 50/60Hz

	Ampere: 3.16A

	Data Sheet - Charger (pdf) [https://github.com/kobuki-base/kobuki_resources/blob/devel/hardware/specifications/charger_spec.pdf].

Batteries

Kobuki by the default ships with a small Lithium-Ion battery pack (4S1P, 2200mAh, 14.8V).

[image: _images/battery_pack_small_4S1P.jpg]

Tip

For extra long operation, a big battery pack (4S2P, 4400mAh, 14,8V)
can be ordered as well.

[image: _images/battery_pack_big_4S2P.jpg]

Warning

The electronics does not support the use of multiple battery packs at the same time
(even if there is room in the battery compartment).

Specifications

	Data Sheet - Battery Pack (pdf) [https://github.com/kobuki-base/kobuki_resources/blob/release/1.0.x/hardware/specifications/kobuki_battery_4S1P.pdf]

Pinouts

	Red : battery (+), 9.6 V ~ 16.8 V

	White: NTC thermistor to ground, 10 kΩ ± 1%

	Black: battery(-), Ground

Charging Profile

This plot shows the voltages as measured by the robot’s hardware. Both the standard
4S1P and the extra 4S2P batteries are compared. During the test, the robot was charging
via adaptor.

[image: _images/battery_charging_profile.jpg]

Discharging Profile

This plot shows the voltage as measured by the robot’s hardware. Both the standard 4S1P
and the extra 4S2P batteries are compared. During the test, the robot was continuously
spinning, with the Kinect camera running.

[image: _images/battery_discharging_profile.jpg]

Expansion Port

Pictured below are the pinouts of Kobuki’s expansion port, including the serial pins.
The minimum number of required pins for serial communication is three; TX, RX, and GND.
Additionally EX3.3 or EX5 can be used for powering external devices, such as line transceiver.

[image: _images/serial_port.jpg]

	RX / TX: Serial data connection (RS232; used voltage level is 3.3V!)

	EX3.3 / EX5: 3.3V/1A and 5V/1A power supply

	DI0 - 3: 4 x Digital input (high: 3.3 - 5V, low: 0V)

	DO0 - 3: 4 x Digital output (open-drain, pull-up resistor required)

	AI0-3: 4 x Analog input (12bit ADC: 0 - 4095, 0 - 3.3V)

	GND: Ground

	EN: Used for detecting an external board (connect to external ground)

Conversions

Encoder2Pose

Here are the necessary parameters and calcualations for conversion of
encoder ticks to robot pose.

	
	Name

	Value

	Description

	Robot Parameters

	wheelbase (bias)

	230mm

	length between the centre of the wheels

	
	wheel radius

	35mm

	

	
	wheel width

	21mm

	

	Magnetic Encoder

	ticks per revolution

	52 tick/rev

	

	
	pulses per revolution

	13 pulse/rev

	

	Gear Box

	1st stage

	1:10

	

	
	2nd stage

	22:12

	

	
	3rd stage

	30:11

	

	
	4th stage

	35:12

	

	
	5th stage

	34:1

	

	
	resultant ratio

	6545/132 = 49.5833

	6545 turns of motors(or encoders) will make 132 turns of wheels

	Conversions

	ticks to metres

	0.000085292090497737556558 m/tick

	

	
	ticks to radians

	0.002436916871363930187454 rad/tick

	

	
	metres to ticks

	11724.41658029856624751591 tick/m

	

	
	radian to ticks

	11.72441658029856624751591 tick/mm

	

Serial Protocol

About

A software program communicates with the robot by using predefined protocol on the serial or usb-serial
lines. The provided c++ library, libkobuki.so does this for you, so in most cases, understanding
the serial protocol is not necessary. This section is for implementers of libraries attempting to communciate
with the Kobuki via either a different language (e.g. java) or their own custom c++ implementation.

In general, commands are sent to the robot on the RX line and responses / sensor readings are streamed
back on the TX line at a rate of 20ms.

Data Types

Types

Data fields used in commands or payloads can be in the form of one of the three data types specified below:

	Name | Description

	Bytes

	Bits

	Range

	C/C++ Identifier

	Unsigned Byte

	8-bit unsigned int

	1

	8

	0~255

	unsigned char

	uint8_t

	Unsigned Short

	16-bit unsigned int

	2

	16

	0~65,535

	unsigned short

	uint16_t

	Unsigned Int

	32-bit unsigned int

	4

	32

	0~4,294,967,295

	unsigned int

	uint32_t

Ordering

Data for the multi-byte types are in LSB [http://en.wikipedia.org/wiki/Least_significant_byte] order.
This means the least significant byte will come first in the bytestream, for example, the integer
2,864,434,397 (0xAABBCCDD) will be represented in the bytestream as:

	0xDD

	0xCC

	0xBB

	0xAA

The ByteStream

Structure

The returning stream consists of packets that combine both sensor data and responses to requests
that have been sent in the previous cycle. A bytestream can be divided into 4 fields:
Headers, Length, Payload and Checksum.

	Headers

	Length

	Payload

	Checksum

	Header0

	Header1

	SubPayload0

	…

	SubPayloadN-1

	Name

	Header 0

	Header 1

	Length

	Payload

	Checksum

	Size

	1 Byte

	1 Byte

	1 Byte

	N Bytes

	1 Byte

	Description

	0xAA

	0x55

	Payload size

	See below

	XOR (length + payload)

Headers

Two bytes of headers, header 0 and header 1, are of fixed value for both bytestreams,
commands and feedback data. This headers are used to detect the starting point of bytestream.

Length

Length is a single byte that indicates size of the variable payload (in bytes).
Length can be used to distinguish each bytestreams. Minimum value of this field is 3.

Payload

The payload is where the gold (actual data) is!

A payload is actually representative of several sub-payloads stitched together.

	Payload

	SubPayload0

	SubPayload1

	SubPayload2

	…

	SubPayload N-1

Sub-payloads can be divided into three parts; Header, Length and Data:

	Name

	Header

	Length

	Data

	Size

	1 Byte

	1 Byte

	N Byte(s)

	Description

	Identifier

	Size of data

	See below

Checksum

The checksum is the XOR’ed value of the entire bytestream sans the headers.
This is used as a check to ensure the integrity of the contents of the bytestream since
individual bytes can be easily corrupted on the wire.

A c++ code snippet demonstrating the algorithm used:

unsigned int packet_size(buffer.size());
unsigned char cs(0);
for (unsigned int i = 2; i < packet_size; i++)
{
 cs ^= buffer[i];
}
return cs ? false : true;

Command Packets

Command Identifiers

	ID

	Name

	Description

	1

	Base Control

	Control wheel motors

	2

	Reserved

	

	3

	Sound

	Play custom sounds

	4

	Sound Sequence

	Play predefined sound sequences

	5

	Reserved

	

	6

	Reserved

	

	7

	Reserved

	

	8

	Reserved

	

	9

	Request Extra

	Request extra information

	10

	Reserved

	

	11

	Reserved

	

	12

	General Purpose Output

	Control general purpose outputs

	13

	Set Controller Gain

	Set PID gain of wheel velocity controller

	14

	Get Controller Gain

	Get PID gain of wheel velocity controller

Base Control

Control wheel motors to moving robot. Robot will follow the arc line, which radius
is <Radius> mm, with <Speed> mm/s. Positive Radius indicates center of arc line that
robot follows is located at the left side of the robot. Negative is opposite.

[image: _images/velocity_representation.png]
But actual value of speed field is little bit different. Here is conversion table.

	Motion

	Speed(mm/s)

	Radius(mm)

	Pure Translation

	Speed

	0

	Pure Rotation

	w*b / 2

	1

	Translation + Rotation

	Speed * (Radius + b) / 2) / Radius, if Radius > 1

	Radius

	
	Speed * (Radius - b / 2) / Radius, if Radius < -1

	Radius

	w is rotation speed of the robot, in [rad/s].

	b is bias or wheelbase, that indicates the length between the center of the wheels.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	1

	0x01

	Fixed

	Length

	Size of data field

	1

	4

	0x04

	Fixed

	Data

	Speed

	2

	
	
	in mm/s

	
	Radius

	2

	
	
	in mm

Sound

Play custom sounds with note and duration.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	3

	0x03

	Fixed

	Length

	Size of data field

	1

	3

	0x03

	Fixed

	Data

	Note

	2

	
	
	1 / (f*a), where f is the frequency (Hz), a is 0.00000275

	
	Duration

	1

	
	
	Duration of playing note in milli-seconds

Note

This command is implemented on the kobuki with firmware, but not implemented yet in the c++ library
(kobuki_core).

Sound Sequence

Play predefined sounds by its index.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	4

	0x04

	Fixed

	Length

	Size of data field

	1

	1

	0x01

	Fixed

	Data

	Sequence number

	1

	
	
	0 for ON sound

	
	
	
	
	
	1 for OFF sound

	
	
	
	
	
	2 for RECHARGE sound

	
	
	
	
	
	3 for BUTTON sound

	
	
	
	
	
	4 for ERROR sound

	
	
	
	
	
	5 for CLEANINGSTART sound

	
	
	
	
	
	6 for CLEANINGEND sound

Request Extra

Request extra data from robot. Especially version info of kobuki; Hardware Version,
Firmware Version and Unique Device IDentifier(UDID)

UDID is unique to device. so can be used to identify on multiple robots.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	9

	0x09

	Fixed

	Length

	Size of data field

	1

	2

	0x02

	Fixed

	Data

	Request flags

	2

	
	
	Set the flags to request extra data

	
	
	
	
	
	0x01 for Hardware Version

	
	
	
	
	
	0x02 for Firmware Version

	
	
	
	
	
	0x08 for Unique Device ID

General Purpose Output

This command has multiple roles. It controls LEDs, digital outputs and external powers.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	12

	0x0C

	Fixed

	Length

	Size of data field

	1

	2

	0x02

	Fixed

	Data

	Digital output flags 2

	
	
	
	Set the flags to set high on output pins of expansion port

	
	
	
	
	
	0x0001 for digital output ch. 0

	
	
	
	
	
	0x0002 for digital output ch. 1

	
	
	
	
	
	0x0004 for digital output ch. 2

	
	
	
	
	
	0x0008 for digital output ch. 3

	
	
	
	
	
	

	
	
	
	
	
	Set the flags to turn on external powers

	
	
	
	
	
	0x0010 for external power 3.3V ch.

	
	
	
	
	
	0x0020 for external power 5V ch.

	
	
	
	
	
	0x0040 for external power 12V/5A ch.

	
	
	
	
	
	0x0080 for external power 12V/1.5A ch.

	
	
	
	
	
	

	
	
	
	
	
	Set the flags to turn on LEDs

	
	
	
	
	
	0x0100 for red colour of LED1

	
	
	
	
	
	0x0200 for green colour of LED1

	
	
	
	
	
	0x0400 for red colour of LED2

	
	
	
	
	
	0x0800 for green colour of LED2

Set Controller Gain

Set PID gain of wheel velocity controller of robot.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	1

	0x01

	Fixed

	Length

	Size of data field

	1

	13

	0x0D

	Fixed

	Data

	Type

	1

	
	
	0 for factory-default PID gain

	
	
	
	
	
	1 for user-configured PID gain

	
	P gain

	4

	
	
	Kp * 1000 (default: 100*1000)

	
	I gain

	4

	
	
	Ki * 1000 (default: 0.1*1000)

	
	D gain

	4

	
	
	Kd * 1000 (default: 2*1000)

Get Controller Gain

Request PID gain of wheel velocity controller of robot.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	1

	0x01

	Fixed

	Length

	Size of data field

	1

	14

	0x0E

	Fixed

	Data

	unused

	1

	
	
	

Feedback Packets

Feedback Identifiers

	ID

	Name

	Descritpion

	Availability

	1

	Basic Sensor Data

	Basic core sensor data

	By default

	2

	Reserved

	
	

	3

	Docking IR

	Signals from docking station

	By default

	4

	Inertial Sensor

	Gyro data both angle and angular velocity

	By default

	5

	Cliff

	PSD data facing floor

	By default

	6

	Current

	Current of wheel motors

	By default

	7

	Reserved

	
	

	8

	Reserved

	
	

	9

	Reserved

	
	

	10

	Hardware Version

	Version number of kobuki hardware

	On request

	11

	Firmware Version

	Version number of kobuki firmware

	On request

	12

	Reserved

	
	

	13

	Raw data of 3-axis gyro

	Raw ADC data of digital 3-axis gyro

	By default

	14

	Reserved

	
	

	15

	Reserved

	
	

	16

	General Purpose Input

	Inputs from 25-pin expansion port

	By default

	17

	Reserved

	
	

	18

	Reserved

	
	

	19

	Unique Device IDentifier(UDID)

	Unique number to identify robot

	On request

	20

	Reserved

	
	

	21

	Controller Info

	PID gain values of wheel velocity controller

	On request

Basic Sensor Data

Note

This sub-payload is always streamed.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Feedback Identifier

	1

	1

	0x01

	Fixed

	Length

	Size of data field

	1

	15

	0x0F

	Fixed

	Data

	Timestamp

	2

	
	
	Timestamp generated internally in milliseconds

	
	
	
	
	
	It circulates from 0 to 65535

	
	Bumper

	1

	
	
	Flag will be setted when bumper is pressed

	
	
	
	
	
	0x01 for right bumper

	
	
	
	
	
	0x02 for central bumper

	
	
	
	
	
	0x04 for left bumper

	
	Wheel drop

	1

	
	
	Flag will be setted when wheel is dropped

	
	
	
	
	
	0x01 for right wheel

	
	
	
	
	
	0x02 for left wheel

	
	Cliff

	1

	
	
	Flag will be setted when cliff is detected

	
	
	
	
	
	0x01 for right cliff sensor

	
	
	
	
	
	0x02 for central cliff sensor

	
	
	
	
	
	0x04 for left cliff sensor

	
	Left encoder

	2

	
	
	Accumulated encoder data of left and right wheels in ticks

	
	
	
	
	
	Increments of this value means forward direction

	
	
	
	
	
	It circulates from 0 to 65535

	
	Right encoder

	2

	
	
	As above

	
	Left PWM

	1

	
	
	PWM value that applied to left and right wheel motor

	
	
	
	
	
	This data should be converted signed type to represent correctly

	
	
	
	
	
	Negative sign indicates backward direction

	
	Right PWM

	1

	
	
	As above

	
	Button

	1

	
	
	Flag will be setted when button is pressed

	
	
	
	
	
	0x01 for Button 0

	
	
	
	
	
	0x02 for Button 1

	
	
	
	
	
	0x04 for Button 2

	
	Charger

	1

	
	
	0 for DISCHARGING state

	
	
	
	
	
	2 for DOCKING_CHARGED state

	
	
	
	
	
	6 for DOCKING_CHARGING state

	
	
	
	
	
	18 for ADAPTER_CHARGED state

	
	
	
	
	
	22 for ADAPTER_CHARGING state

	
	Battery

	1

	
	
	Voltage of battery in 0.1 V

	
	
	
	
	
	Typically 16.7 V when fully charged

	
	Overcurrent flags

	1

	
	
	Flag will be setted when overcurrent is detected

	
	
	
	
	
	0x01 for left wheel

	
	
	
	
	
	0x02 for right wheel

Docking IR

Signals from the docking station.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	3

	0x03

	Fixed

	Length

	Size of data field

	1

	3

	0x03

	Fixed

	Data

	Right signal

	1

	
	
	Flag will be setted when signal is detected

	
	
	
	
	
	0x01 for NEAR_LEFT state

	
	
	
	
	
	0x02 for NEAR_CENTER state

	
	
	
	
	
	0x04 for NEAR_RIGHT state

	
	
	
	
	
	0x08 for FAR_CENTER state

	
	
	
	
	
	ox10 for FAR_LEFT state

	
	
	
	
	
	0x20 for FAR_RIGHT state

	
	Central signal

	1

	
	
	

	
	Left signal

	1

	
	
	

Kobuki’s docking station has 3 IR emitters. The emitted IR lights cover three regions in front of the docking station: left, central and right, each divided in two sub-fields: near and far. Each beam encodes this information, so the robot knows at any moment in which region and sub-field he is. Also, as regions and fields are independently identified, they can be overlap on its borders.

[image: _images/dock_ir_fields.png]

Inertial Sensor Data

Note

This sub-payload is always streamed.

Z-axis gyro data only available.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	4

	0x04

	Fixed

	Length

	Size of data field

	1

	7

	0x07

	Fixed

	Data

	Angle

	2

	
	
	Factory calibrated

	
	Angle rate

	2

	
	
	Factory calibrated

	
	Unused

	1

	
	
	

	
	Unused

	1

	
	
	

	
	Unused

	1

	
	
	

Cliff Sensor Data

Note

This sub-payload is always streamed.

This value is related with distance between sensor and floor surface.
See the datasheet for more detailed information.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	5

	0x05

	Fixed

	Length

	Size of data field

	1

	6

	0x06 Fixed

	

	Data

	Right cliff sensor

	2

	
	
	ADC output of each PSD

	
	
	
	
	
	Data range: 0 ~ 4095 (0 ~ 3.3V)

	
	
	
	
	
	Distance range: 2 ~ 15 cm

	
	
	
	
	
	Distance is not linear w.r.t. ADC output.

	
	
	
	
	
	See the datasheet for more detail.

	
	Central cliff sensor

	2

	
	
	As above

	
	Left cliff sensor

	2

	
	
	As above

Current

Note

This sub-payload is always streamed.

Current sensor readings of wheel motors.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	6

	0x06

	Fixed

	Length

	Size of data field

	1

	2

	0x02

	Fixed

	Data

	Left motor

	2

	
	
	in 10mA

	
	Right motor

	2

	
	
	in 10mA

Hardware Version

Note

This sub-payload is sent only on request.

Hardware version info in triplet form; <major>.<minor>.<patch>

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	10

	0x0A

	Fixed

	Length

	Size of data field

	1

	4

	0x04

	Fixed

	Data

	Patch

	1

	
	
	

	
	Minor 1

	
	
	
	

	
	Major 1

	
	
	
	

	
	Unused

	1

	0

	0x00

	Fixed

Firmware Version

Note

This sub-payload is sent only on request.

Firmware version info in triplet form; <major>.<minor>.<patch>

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	11

	0x0A

	Fixed

	Length

	Size of data field

	1

	4

	0x04

	Fixed

	Data

	Patch

	1

	
	
	

	
	Minor 1

	
	
	
	

	
	Major 1

	
	
	
	

	
	Unused

	1

	0

	0x00

	Fixed

Raw Data Of 3D Gyro

Note

This sub-payload is always streamed.

Raw ADC data of digital 3D gyro L3G4200D [http://www.st.com/internet/analog/product/250373.jsp].
Due to difference of acquisition rate and update rate, 2-3 data will be arrived at once.
Digit to deg/s ratio is 0.00875, it comes from
datasheet [http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00265057.pdf] of 3d gyro.

ADC output of each-axis is in 0.00875 deg/s.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	13

	0x0D

	Fixed

	Length

	Size of data field

	1

	2+6N

	
	

	Data

	Frame id

	1

	
	
	Frame id of ‘Raw gyro data 0’

	
	
	
	
	
	Every sensor readings can identified by frame id

	
	
	
	
	
	Circulates from 0 to 255

	
	Followed data length

	1

	3N

	
	

	
	Raw gyro data 0

	2

	
	
	x-axis

	
	
	2

	
	
	y-axis

	
	
	2

	
	
	z-axis

	
	…

	2

	
	
	z-axis

	
	Raw gyro data N-1

	2

	
	
	

	
	
	2

	
	
	

	
	
	2

	
	
	

Note

Sensing axis of 3d gyro is not match with robot. It is rotated 90 degree counterclockwise about z-axis.
So, below conversion will needed.

const double digit_to_dps = 0.00875;
angular_velocity.x = -digit_to_dps * (short)raw_gyro_data.y;
angular_velocity.y = digit_to_dps * (short)raw_gyro_data.x;
angular_velocity.z = digit_to_dps * (short)raw_gyro_data.z;

General Purpose Input

Note

This sub-payload is always streamed.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	16

	0x10

	Fixed

	Length

	Size of data field

	1

	16

	0x10

	Fixed

	Data

	Digital input

	2

	
	
	Flag will be setted, when high voltage is applied

	
	
	
	
	
	0x01 for digital input ch. 0

	
	
	
	
	
	0x02 for digital input ch. 1

	
	
	
	
	
	0x04 for digital input ch. 2

	
	
	
	
	
	0x08 for input output ch. 3

	
	Analog input ch.0

	2

	
	
	12-bit ADC output of each channel

	
	
	
	
	
	Data range: 0 ~ 4095(2^12-1)

	
	
	
	
	
	Voltage range: 0 ~ 3.3 V

	
	Analog input ch.1

	2

	
	
	As above

	
	Analog input ch.2

	2

	
	
	As above

	
	Analog input ch.3

	2

	
	
	As above

	
	Unused

	2

	
	
	

	
	Unused

	2

	
	
	

	
	Unused

	2

	
	
	

Unique Device IDentifier (UDID)

Note

This sub-payload is sent only on request.

Contains Unique Device IDentifier of robot. This value is unique for all robot in the world.
It can be represented by triplet form: <UDID0>-<UDID1>-<UDID2>

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	19

	0x13

	Fixed

	Length

	Size of data field

	1

	12

	0x0C

	Fixed

	Data

	UDID0

	4

	
	
	

	
	UDID1

	4

	
	
	

	
	UDID2

	4

	
	
	

Controller Info

Note

This sub-payload is sent only on request.

Contains PID gain of wheel velocity controller of robot.

	
	Name

	Size

	Value

	Hex

	Description

	Header

	Identifier

	1

	1

	0x01

	Fixed

	Length

	Size of data field

	1

	21

	0x15

	Fixed

	Data

	Type

	1

	
	
	Current controller setup

	
	
	
	
	
	0 for factory-default PID gain

	
	
	
	
	
	1 for user-configured PID gain

	
	P gain

	4

	
	
	Kp * 1000 (default: 100*1000)

	
	I gain

	4

	
	
	Ki * 1000 (default: 0.1*1000)

	
	D gain

	4

	
	
	Kd * 1000 (default: 2*1000)

Firmware

Versioning

Firmware versions follow semantic versioning [https://semver.org/] rules. The c++ driver [https://github.com/kobuki-base/kobuki_core]
checks for compatibility between the software (i.e. driver) and firmware.
Firmware versions are of the form M.m.p:

	M(ajor) versions typically break protocol compatibility. When software and firmware are incompatible, the software will emit an error, suggest the required update and shutdown.

	m(inor) versions add features, but the protocol will have not been modified. Software and firmware will inter-operate, but warnings will be issued just-in-time when features are used that aren’t supported by the connected firmware.

	p(atch) versions provide minor bugfixes, but do not break driver or protocol compatibility.

Additionally, the software maintains a list of recommended versions. Even if there is only a minor or patch
version difference, it will give you a warning on connection and suggest the recommended firmware version
to upgrade to. For example:

$ kobuki-simple-keyop

Simple Keyop : Utility for driving kobuki by keyboard.

Reading from keyboard

Forward/back arrows : linear velocity incr/decr.
Right/left arrows : angular velocity incr/decr.
Spacebar : reset linear/angular velocities.
q : quit.

[WARNING] The firmware does not match any of the recommended versions for this software.
[WARNING] Consider replacing the firmware. For more information,
[WARNING] refer to https://kobuki.readthedocs.io/en/devel/firmware.html.
[WARNING] - Firmware Version: 1.1.3
[WARNING] - Recommended Versions: 1.1.4 / 1.2.0

current pose: [x: 5.61871e-310, y: 1.57358e-314, heading: 6.90938e-310]
current pose: [x: 5.61871e-310, y: 1.57358e-314, heading: 6.90938e-310]

The c++ driver [https://github.com/kobuki-base/kobuki_core] provides a utility for checking the version that is running
on your kobuki. It will also provide versioning information for the driver (software)
and hardware:

$ kobuki-version-info
 Version Info:
 * Hardware Version: 1.0.4
 * Firmware Version: 1.2.0
 * Software Version: 1.0.0
 * Unique Device ID: 97713968-842422349-1361404194

Additionally, firmware binaries come in three flavours:

	latest: most recent, but be aware that this version hasn’t been tested much

	stable: more recent than factory and reasonably well tested

	factory: flashed onto the robots at the factory, has undergone stress testing

These are identified by the trailing suffix on binary filenames stored in the
kobuki_firmware [https://github.com/kobuki-base/kobuki_firmware/tree/devel/firmware] repository. More details on the specific features / fixes
provided by each version can be found in the kobuki
firmware CHANGELOG [https://github.com/kobuki-base/kobuki_firmware/blob/devel/CHANGELOG.rst].

Updating Firmware

Kobuki’s come pre-flashed from the factory. The only time you should need to upgrade
is if you have an older version and wish to catch new fixes or features.

Linux

The Flashing Utility

Download stm32flash-0.4.gz from https://sourceforge.net/projects/stm32flash/files/
$ tar -xvzf stm32flash-0.4.tar.gz
$ cd stm32flash
$ make

Download Firmware

Choose & download from https://github.com/kobuki-base/kobuki_firmware/tree/devel/firmware
e.g. latest
$ wget --no-check-certificate --content-disposition https://github.com/kobuki-base/kobuki_firmware/blob/devel/firmware/kobuki_firmware_1.2.0-latest.hex?raw=true

Identify The COM Port

If you have a udev rule installed, it will show up as /dev/kobuki. If not, you
can typically find it under one of the ttyUSB ports, e.g. /dev/ttyUSB0.
If you are not sure, type dmesg into a terminal, unplug and replug the robot
and type dmesg again. You should now be able to see which port is assigned to the robot.

Switch to Download Mode

	Connect the robot to your PC using the USB cable

	Turn off the robot (switch on the side)

	Switch from normal runtime mode to firmware download mode

This simply changes the type of data that is sent back and forth along the usb connection.
You can do this by moving the switch illustrated below into the ‘download’ (up) position.
Note that this switch is embedded into the robot cover so it isn’t easily thrown by
accident - you may need thin plyers or some similar tool. You can find the mode switch
mechanism on the right side of the control panel:

[image: _images/modes.jpg]

Flashing

Note

The following instructions assume flashing of kobuki_firmware_1.2.0-latest.hex and port /dev/ttyUSB0.
Modify these as necessary.

Warning

you need to execute the flashing command IMMEDIATELY after turning the robot on!

	Turn off the robot

	Check that the switch is in download mode

	Turn on the robot

$./stm32flash -b 115200 -w kobuki_firmware_1.2.0-latest.hex /dev/ttyUSB0
 stm32flash 0.4

 http://stm32flash.googlecode.com/

 Using Parser : Intel HEX
 Interface serial_posix: 115200 8E1
 Version : 0x22
 Option 1 : 0x00
 Option 2 : 0x00
 Device ID : 0x0414 (High-density)
 - RAM : 64KiB (512b reserved by bootloader)
 - Flash : 512KiB (sector size: 2x2048)
 - Option RAM : 16b
 - System RAM : 2KiB
 Write to memory
 Erasing memory
 Wrote address 0x0800a3f0 (100.00%) Done.

Reboot

	Turn off the robot power

	Flick the firmware switch back to ‘Operation’ mode.

	Turn on the robot power

	I’m happy, you should be too!

Windows

The Flashing Utility

	Find, download and install Flash_Loader_Demonstrator_v2.5.0_Setup.exe.

Download Firmware

Choose & download from kobuki_firmware/firmware [https://github.com/kobuki-base/kobuki_firmware/tree/devel/firmware].

Identify the COM Port

Usually this will show up on COM1, but check to make sure.

Switch to Download Mode

	Connect the robot to your PC using the USB cable

	Turn off the robot (switch on the side)

	Switch from normal runtime mode to firmware download mode

This simply changes the type of data that is sent back and forth along the usb connection.
You can do this by moving the switch illustrated below into the ‘download’ (up) position.
Note that this switch is embedded into the robot cover so it isn’t easily thrown by
accident - you may need thin plyers or some similar tool. You can find the mode switch
mechanism on the right side of the control panel - see the image below.

Flashing

	Turn off the robot

	Check that the switch is in download mode

	Turn on the robot

	[image: flash1]

	[image: flash2]

	Configure Properties

	Check that the target is identified

	[image: flash3]

	[image: flash4]

	Enter the Download from file (your .hex)

	Success!

Rebooting

	Turn off the robot power

	Flick the firmware switch back to ‘Operation’ mode.

	Turn on the robot power

	I’m happy, you should be too!

Special Firmware Modes

Activating

Kobuki has some special firmware modes, which can be activated on startup.

	Random Walker

	Arduino/Embedded Board support mode

To activate one of them, follow these instructions:

	Turn on Kobuki.

	Within in the first 3 seconds press and hold either button BO (Random Walker) or B1 (Arduino) for 2 seconds

	If you see LED2 (Random Walker) or LED1 (Arduino) switching between red and green, your chosen mode has been activated.

Note

These modes have been introduced to the firmware with version 1.1.0. In case your Kobuki is not running this or a later version, please refer to the section about updating the firmware.

Random Walker Mode

In random walker mode Kobuki is driving around until it hits an object with the bumper or a cliff is detected. In both cases, Kobuki will stop, turn by a random amount of degrees and continue driving .

Warning

In this mode Kobuki’s wheel drop sensors are not activated. So, be careful when lifting up Kobuki!

Arduino / Embedded Board Support Mode

In this mode the serial port (DB25 connector) gives access to basic controls of Kobuki. You can hook up the digital/analog inputs/outpus of your Arduino or other embedded boards and start writing simple control programs.

Below is the special pin setting listed. Please refer to the serial port description for the name to pin mapping.

	DI0: Not used

	DI1: Not used

	DI2: Not used

	DI3: Not used

	DO0: Bumper left (pressed/released)

	DO1: Bumper centre (pressed/released)

	DO2: Bumper right (pressed/released)

	DO3: Wheel drop sensors (at least one wheel is dropped / none is dropped)

	AI0: Wheel speed right (0V - full speed backward, 3.3V - full speed forward)

	AI1: Wheel speed left (0V - full speed backward, 3.3V - full speed forward)

	AI2: Not used

	AI3: Not used

All other pins (GND, RX, TX etc.) remain unchanged.

Note

To enable the motors you need to press button B0.

Media

	Kobuki Images & Renderings [https://github.com/kobuki-base/kobuki_resources/tree/release/1.0.x/media]

	Marketing Materials [https://github.com/kobuki-base/kobuki_resources/tree/release/1.0.x/marketing]

Docking Stations

About

[image: _images/docking_station.jpg]
Docking stations are an optional extra that can enable Kobuki to autonomously recharge as needed (with a little programming).

How it Works

Kobuki’s docking station has 3 IR emitters positioned on the left, right and centre of the docking station. Each emitter beams encoded signals
in a manner that will ensure coverage of the area in front of the docking station partitioned in six areas - left, right and centre, further
subdivided near and far as illustrated below.

[image: _images/dock_ir_fields.png]
Three receivers are also positioned left, right and centre on the docking station and will receive a mix of the signals hitherto sent
from the emitters and bounced off any object in range of the docking station (i.e. an incoming Kobuki). If for example, Kobuki was
still far from the docking station and in the left region, then both left and centre signals will receive the FAR_LEFT state and the
right receiver will record null. This is sufficient to enable a simple docking algorithm to work robustly, even if the solution may
not always be elegant due to a lack of resolution on the range axis (merely bifurcates, near and far).

Software

Todo

In need of someone owning a docking station to assist with usage of kobuki_dock_drive library and example demo

Embedded Boards

Cross Compiling

Getting Started

Kobuki is c++ and built using CMake, so to cross-compile, these instructions will take advantage
of CMake Toolchains, configuration which of is dependent on the c++ toolchain being used to
compile the libraries.

For a primer on CMake and how to define CMake toolchains, refer to the cmake manual -
cmake toolchains [https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html].

Use Case - arm-linux-gnueabihf

Preparation

Let’s get hands on and use one of the c++ toolchains provided by Ubuntu 20.04 as an example.

Note

You are not limited by what your linux distro provides, pretty much any downloadable gcc
toolchain can be enabled this one, just merely point your cmake toolchain configuration to
wherever you have installed your toolchain.

Download a toolchain:

sudo apt install g++-arm-linux-gnueabihf

This is the generic toolchain for arm cores with hard-float capabilities (usually the more powerful
variety of arm cores). You will find the toolchain installed in /usr/arm-linux-gnueabihf/.
Next, create a cmake toolchain file that will instruct cmake on where to find your toolchain, your
your staging area and set appropriate CXX Flags for your target:

set(TOOLCHAIN_TUPLE "arm-linux-gnueabihf" CACHE STRING "Toolchain signature identifying cpu-vendor-platform-clibrary.")
set(TOOLCHAIN_ROOT "/usr/${TOOLCHAIN_TUPLE}" CACHE STRING "Root of the target development environment (libraries, headers etc).")

Target information
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR "arm")
unset(CMAKE_Fortran_COMPILER) # This toolchain doesn't have a fortran compiler
set(CMAKE_C_COMPILER ${TOOLCHAIN_TUPLE}-gcc) # Make sure these are in your PATH
set(CMAKE_CXX_COMPILER ${TOOLCHAIN_TUPLE}-g++)

Search paths - only dig around in the toolchain root and staging area
set(CMAKE_FIND_ROOT_PATH "${TOOLCHAIN_SYSROOT};${CMAKE_CURRENT_LIST_DIR}/install" CACHE STRING "Cmake search variable for finding libraries/headers.")
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER) # Don't search for programs outside of CMAKE_FIND_ROOT_PATH and CMAKE_SYSROOT
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY) # ... libraries
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY) # ... headers
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY) # ... cmake modules

CXX Flags specific to the target platform (typical raspberry pi platform)
#
- benchmark yourself, mileage will vary considerably, large speedups to be gained
- a good starting point is https://wiki.gentoo.org/wiki/Safe_CFLAGS#ARMv6.2FARM1176JZF-S
#
Also, -Wno-psabi avoids irritating gcc 7.1 warnings about not mixing binaries with gcc 6 binaries
#
set(CMAKE_CXX_FLAGS "-march=armv7 -mtune=arm1176jzf-s -pipe -mfloat-abi=hard -mfpu=vfp -Wno-psabi" CACHE STRING "flags specific for an armv7/arm1176jzf-s platform")

Hide from cache's front page
MARK_AS_ADVANCED(CMAKE_GENERATOR CMAKE_FIND_ROOT_PATH CMAKE_TOOLCHAIN_FILE TOOLCHAIN_FAMILY TOOLCHAIN_TUPLE)

It can be named whatever you please, here we’ll refer to it as arm-linux-gnueabihf.cmake. In other
circumstances, toolchain, staging area and cxx flags would be handled separately for maximum flexibility,
but one file here keeps things simple to get started.

Building

Follow the instructions for setting up the sources as in Software - Preparation,
but stop short of building, we’ll do that a little differently here. Namely:

	Configure your PATH so that your toolchain can be found

	Point cmake at your toolchain file

The modified instructions for building:

$ export PATH=${PATH}:/usr/arm-linux-gnueabihf/bin
$ export CMAKE_ARGS="-DBUILD_TESTING=OFF --no-warn-unused-cli"
$ export CROSS_COMPILE_ARGS=-DCMAKE_TOOLCHAIN_FILE=`pwd`/arm-linux-gnueabihf.cmake
$ colcon build --merge-install --cmake-args ${CMAKE_ARGS} ${CROSS_COMPILE_ARGS}

Other variations on the build step still hold as per the instructions
in Software - Build.

These instructions are continuously vetted with a github action
(yaml [https://github.com/kobuki-base/kobuki_documentation/blob/devel/.github/workflows/weekly.yaml],
results/logs [https://github.com/kobuki-base/kobuki_documentation/actions?query=workflow%3Abuild_sources]).

Using The Serial Port (!USB)

If your embedded board has a serial port rather than a USB, you’re in luck, Kobuki has that too
via it’s expansion port. You most likely will have to wire your own cable to make the
correct pin-to-pin connections, as outlined in the section on the Expansion Port.

Reproducing here for convenience:

[image: _images/serial_port.jpg]
The minimum number of required pins for serial communication is three; TX, RX, and GND.
Additionally EX3.3 or EX5 can be used for powering external devices, such as line transceiver.

Once connected, you should find your kobuki on one of the /dev/ttySN ports (N = 1, 2, …). Simply
pass that string as the serial port identifier in the initialisation phase of your software
applications.

Non-C++ Kobuki

[image: _images/languages.png]
The only requirement to programming
with Kobuki in a language other than C++ is the ability to communicate
with a serial port.
To do so, you’ll need to implement the Serial Protocol
in the language of your choice.
The c++ library [https://github.com/kobuki-base/kobuki_core]
can be a useful guide in how to do so.

To date there have been several experimental
java/android implementations that have made this journey.

Changelog

Note

This is a curated list of changes for all repositories in the kobuki ecosystem (to which this
documentation pertains). See also:

[kobuki_core/CHANGELOG.rst [https://github.com/kobuki-base/kobuki_core/blob/devel/CHANGELOG.rst]]
[kobuki_firmware/CHANGELOG.rst [https://github.com/kobuki-base/kobuki_firmware/blob/devel/CHANGELOG.rst]]

September ‘20

	
	[kobuki_core-1.3.1]

	
	configurable stdout logging

	custom_logging and raw_data_stream demos added

	dual version firmware compatibility (1.1.4, 1.2.0)

	[kobuki_core-1.3.0] LegacyPose2D -> Eigen::Vector3d

	[kobuki_core-0.7.10] dual version firmware compatibility (1.1.4, 1.2.0)

	[kobuki_documentation-1.0.2] debugging tutorials (logging and raw data streams)

August ‘20

	[kobuki_core-1.2.0] kobuki_driver & kobuki_dock_driver merged into kobuki_core

	[kobuki_core-1.1.1] (bugfix) restore low latency usb reads via the udev rule and doxygen [https://kobuki-base.github.io/kobuki_core/] revamp

	[kobuki_core-0.7.9] (bugfix) restore low latency usb reads via the udev rule

	[kobuki_documentation-1.0.1] cross-compiling [https://kobuki.readthedocs.io/en/devel/embedded_boards.html#cross-compiling] instructions

	[kobuki_documentation-1.0.0] new guide on readthedocs [https://kobuki.readthedocs.io/en/devel/index.html], everything in one place now!

Mar ‘20

	[kobuki_firmware-1.2.0] new github repo [https://github.com/kobuki-base/kobuki_firmware] for the kobuki firmware binaries, with license

Jan ‘20

	
	[kobuki_core-1.0.0]

	
	moved to the kobuki-base github org

	ported to the colcon build system

Glossary

	kobuki

	kobuki: n. korean for turtle

	fsm	flying spaghetti monster

	Whilst a serious religous entity in his own right (see pastafarianism [http://www.venganza.org/]), it’s also
very easy to imagine your code become a spiritual flying spaghetti monster if left
unchecked:

 _ _(o)_(o)_ _
._\`:_ F S M _:' _,
 / (`---'\ `-.
 ,-` _) (_,

 Index

Index

 F
 | K

F

 	
 	flying spaghetti monster

 	
 	fsm

K

 	
 	kobuki

 <no title>

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/battery_charging_profile.jpg
Voltage (V)

17

165

16

155

15

145

14

135

13

452p ——

I i I I I I
o 20 40 60 80 100 120 140 160
Charging Time (min.)

_images/battery_discharging_profile.jpg
—
—=

= .

_images/battery_pack_big_4S2P.jpg

_images/battery_pack_small_4S1P.jpg

nav.xhtml

 Table of Contents

 		
 Contents

 		
 About

 		
 Out of the Box

 		
 Charging

 		
 First Run

 		
 Installing & Running the Software

 		
 Install from Binaries

 		
 Build from Source

 		
 Requirements

 		
 Preparation

 		
 Build

 		
 Connect Kobuki

 		
 Checking the Version Info

 		
 Take Kobuki for a Test Drive

 		
 Creating Applications

 		
 Chirp

 		
 About

 		
 The Kobuki Library

 		
 The Kobuki Class

 		
 Initialisation & Configuration

 		
 Code

 		
 Events & Streams

 		
 About

 		
 Signals and Slots

 		
 Code - Button Events

 		
 Code - The Sensor Stream

 		
 A Simple Control Loop

 		
 About

 		
 Code

 		
 Decoupling the Control

 		
 Logging

 		
 About

 		
 Code - Log Levels

 		
 Output - Log Levels

 		
 Code - Custom Loggers

 		
 Output - Custom Loggers

 		
 Debugging the Stream

 		
 About

 		
 Code

 		
 Output

 		
 Anatomy

 		
 Views

 		
 Top

 		
 Bottom

 		
 Control Panel

 		
 Connectors

 		
 Power

 		
 Battery

 		
 I/O Port

 		
 Cables

 		
 Models & Drawings

 		
 Motors

 		
 Specifications

 		
 Control Method

 		
 Gyro

 		
 Specifications

 		
 Performance

 		
 Power Adapter

 		
 Specifications

 		
 Batteries

 		
 Specifications

 		
 Pinouts

 		
 Charging Profile

 		
 Discharging Profile

 		
 Expansion Port

 		
 Conversions

 		
 Encoder2Pose

 		
 Serial Protocol

 		
 About

 		
 Data Types

 		
 Types

 		
 Ordering

 		
 The ByteStream

 		
 Structure

 		
 Headers

 		
 Length

 		
 Payload

 		
 Checksum

 		
 Command Packets

 		
 Command Identifiers

 		
 Base Control

 		
 Sound

 		
 Sound Sequence

 		
 Request Extra

 		
 General Purpose Output

 		
 Set Controller Gain

 		
 Get Controller Gain

 		
 Feedback Packets

 		
 Feedback Identifiers

 		
 Basic Sensor Data

 		
 Docking IR

 		
 Inertial Sensor Data

 		
 Cliff Sensor Data

 		
 Current

 		
 Hardware Version

 		
 Firmware Version

 		
 Raw Data Of 3D Gyro

 		
 General Purpose Input

 		
 Unique Device IDentifier (UDID)

 		
 Controller Info

 		
 Firmware

 		
 Versioning

 		
 Updating Firmware

 		
 Linux

 		
 Windows

 		
 Special Firmware Modes

 		
 Activating

 		
 Random Walker Mode

 		
 Arduino / Embedded Board Support Mode

 		
 Media

 		
 Docking Stations

 		
 About

 		
 How it Works

 		
 Software

 		
 Embedded Boards

 		
 Cross Compiling

 		
 Getting Started

 		
 Use Case - arm-linux-gnueabihf

 		
 Using The Serial Port (!USB)

 		
 Non-C++ Kobuki

 		
 Changelog

 		
 September ‘20

 		
 August ‘20

 		
 Mar ‘20

 		
 Jan ‘20

 		
 Glossary

_images/demo_custom_logging.png
kobuki : bash — Konsole

Edit View Bookmarks Settings Help
ISToEEUNDorKSpacesIDITOXyIDIKOBUKID ros2 run kobuki_core demo_custom_logging

Logging Demo

[DEBUG_WITH_COLANDERS] Serial connection opened.

[DEBUG_WITH_COLANDERS] Serial connection opened, but not yet receiving data.
[DEBUG_WITH_COLANDERS] Serial connection opened, but not yet receiving data.
[DEBUG_WITH_COLANDERS] First data received.

[INFO_WITH_COLANDERS] Version info - Hardware: 1.0.4. Firmware: 1.2.0
smorri .. > workspaces > foxy > kobuki I

_images/demo_log_levels.png
kobuki : bash — Konsole

Edit View Bookmarks Settings Help
ISToREUN D orKSpacesIDITOXyIDIKOBUKID ros2 run kobuki_core demo_log_levels

Log Levels Demo

[DEBUG] Serial connection opened.

[DEBUG] Serial connection opened, but not yet receiving data.
[DEBUG] Serial connection opened, but not yet receiving data.
[DEBUG] First data received.

[INFO] Version info - Hardware: 1.0.4. Firmware: 1.2.0
[DEBUG] Kobuki driver destructed.

smorri .. workspaces > foxy > kobuki [

I

_images/bottom_view.jpg

_images/control_panel.jpg
19V 2A 12V 5A 12V 15A 5V1A

o ‘. Download

Operation
'YUJIN ROBOT
Status LED1 LED2 I ¢ L € 8 (.)
KObuki (s (&1 (B2
USB o>

_images/docking_station.jpg

_images/gyro_in_place_rotation.jpg
(n94/69p] 10113 3BesanY

Anguiar Velociy [deg/s]

_images/demo_raw_data_stream.png
kobuki : bash — Konsole

Edit View Bookmarks Settings Help
ISTorrUN D iorKSpacesIDITOXyIDIKOBUKLD) ros2 run kobuki_core demo_raw_data_stream

Raw Data Stream Demo

[257013
D 07 06
[257013
E 07 06

.484266237] AA 55 53 01 OF 48 A4 00 00 00 00 00 00 00 00 00 00 12 A1 00 03 03 00 00 00 04 07 00 00 00 00 00 00 00 05 06 49 07 ED 07 6

02 00 00 0D 14 15 09 50 FF 1B 00 FC FF 53 FF 17 00 F5 FF 5D FF 17 00 F6 FF 10 10 00 00 FF OF FF OF FF OF FF OF EE OF 00 00 00 00 96

.507334015] AA 55 76 01 OF 5C A4 00 00 00 00 00 00 00 00 00 00 12 A1 00 03 03 00 00 00 04 07 00 00 00 00 00 00 00 05 06 49 07 DA 07 6

02 00 00 OA 04 04 00 01 00 0B 04 00 02 01 00 0D OE 18 06 66 FF 1F 00 01 00 66 FF 2B 00 10 00 10 10 00 00 FF OF FF OF FF OF FF OF EE

OF 00 00 00 00 13 OC 30 FF D2 05 4D 58 36 32 22 61 25 51 15 @D 00 A@ 86 01 00 64 00 00 00 DO 07 00 00 BE

[257013
E 07 06
[257013
9 07 06
[257013
9 07 06
[257013
F 07 06
[257013
F 07 06

.524171370] AA 55 4D 01 OF 70 A4 00 00 00 00 00 00 00 00 00 00 12 A1 00 03 03 00 00 00 04 07 00 00 00 00 00 00 00 05 06 43 07 DC 07 6

02 00 00 0D OE 1A 06 S5E FF 2E 00 1A 00 56 FF 26 00 1C 00 10 10 00 00 FF OF DB OF FF OF FF OF EF OF 00 00 00 00 0B

.543298829] AA 55 4D 01 OF 84 A4 00 00 00 00 00 00 00 00 00 00 12 A1 60 03 03 00 00 00 04 07 00 00 00 00 00 00 00 05 06 47 07 DC 07 6

02 00 00 0D OE 1C 06 56 FF 1D 00 1C 00 58 FF 1E 00 1D 00 10 10 00 00 FF OF FF OF FF OF FF OF EE OF 00 00 00 00 D5

.563228087] AA 55 4D 01 OF 98 A4 00 Jo0 00 00 00 00 00 00 00 00 12 A1l 00 03 03 00 00 00 04 07 00 00 00 00 00 00 00 05 06 47 07 DC 07 6

02 00 00 0D OE 1E 06 57 FF 26 00 1E 00 53 FF 2B 00 1F 00 10 10 00 00 FF OF D7 OF FF OF FF OF F2 OF 00 00 00 00 FB

.583186080] AA 55 4D 01 OF AC A4 00 00 00 00 00 00 00 00 00 00 12 A2 00 03 03 00 00 00 04 07 00 00 00 00 00 00 00 05 06 4C 07 F2 07 6

02 00 00 OD OE 20 06 50 FF 26 00 1D 00 4F FF 1D 00 16 00 10 10 00 00 FF OF FF OF FF OF FF OF EE OF 00 00 00 00 C2

.603928688] AA 55 53 01 OF CO A4 00 00 00 00 00 00 00 00 00 00 12 A2 00 03 03 00 00 00 04 07 00 00 00 00 00 00 00 05 06 4C 07 F2 07 6

02 00 00 0D 14 22 09 4F FF 17 00 OF 00 50 FF 18 00 0B 00 52 FF 1C 00 0D 00 10 10 00 00 FF OF 7C OF FD OF FF OF FO OF 00 00 00 00 BF

_images/dock_ir_fields.png
Docking
Station

Right Region Left Region

Central Region

Right Region Left Region

Central Region

Near Field Far Field

_images/gyro_square_test.jpg
Y-axis [m]

o045

045

09

135

225

045

o 045

03 135 18

X-axis (m]

* Ground-truth
—Fused odometry with gyro

m Fused odometry with gyro

225

_images/languages.png

_images/logo_kobuki.png

_images/serial_port.jpg
A2 A0 EXS GND DIl TX
AI3 [AIL| EXS| DI3'| DI2 | DIO | RX

N [EX3.3| 6ND | Doz | ahp | EN
GND EX3.3 GND DO3 DOI DOO

_images/top_view.jpg

_images/modes.jpg

_images/power_panel.jpg
g ave ey

van

T+ [+ IjLCI

_images/windows_flash_2.jpg
Target

PID (h; [0414
BD (h: [NA
Version |22
Flash
Narme Start a... [End ad... | Size S
%Page0 0x 800... Ox 800... Ox800(
Pagel 0x 800.. Ox800.. OxB00(=
Page2 0x 800... Ox 800... Ox300(
#yPage 0x 800